3 resultados para 030602 Chemical Thermodynamics and Energetics

em Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for solutions to minimize the negative environmental impacts of anthropogenic activities Fhas increased. Sewage sludge is composed of predominantly organic matter and can be used to improve soil characteristics, such as fertility. Therefore, its application in agriculture is an adequate alternative for its final disposal. However, there is a lack of information on its long-term effects on soil changes in tropical areas. Thus, the objectives of this study were to determine (i) the effect of sewage sludge application on heavy metal build-up in soil and maize grains and leaves, and (ii) the effects of soil amendment with sewage sludge on the chemical properties of a Brazilian oxisol. Besides the increasing levels of Zn, Cu, Ni, and Cr, amending soil with sewage sludge also alters the distribution of these metals by increasing the mobile Phases, which correlated significantly with the increase in metal extraction with two single extractants, Mehlich 1 and DTPA (Diethylene triamine pentaacetic acid). The levels of Fe, Mn, Zn, and Cu in maize grains and leaves increased with the type and rate of sewage sludge application. Nevertheless, metal build-up in soil and plants was within the allowed limits. Significant differences were also found in soil characteristics like humic fractionation with the applied sewage doses. The data obtained does not indicate any expressive drawbacks in the use of sewage sludge as a soil amendment, as the heavy metal concentrations observed are unlikely to cause any environmental or health problems, even overestimated loadings, and are in accordance with the Brazilian regulations on farming land biosolid disposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Banana is one of the most consumed fruits in the world, which is grown in most tropical countries. The objective of this work was to evaluate the main attributes of soil fertility in a banana crop under two cover crops and two root development locations. The work was conducted in Curaçá, BA, Brazil, between October 2011 and May 2013, using a randomized block design in split plot with five repetitions. Two cover crops were assessed in the plots, the cover 1 consisting of Pueraria phaseoloid es, and the cover 2 consisting of a crop mix with Sorghum bicolor, Ricinus commun is L., Canavalia ensiform is, Mucuna aterrima and Zea mays, and two soil sampling locations in the subplots, between plants in the banana rows (location 1) and between the banana rows (location 2). There were significant and independent effects for the cover crop and sampling location factors for the variables organic matter, Ca and P, and significant effects for the interaction between cover crops and sampling locations for the variables potassium, magnesium and total exchangeable bases. The cover crop mix and the between-row location presented the highest organic matter content. Potassium was the nutrient with the highest negative variation from the initial content and its leaf content was below the reference value, however not reducing the crop yield. The banana crop associated with crop cover using the crop mix provided greater availability of nutrients in the soil compared to the coverage with tropical kudzu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments consisted of two rates of organic fertilizer (0 and 30 m3 ha-1) and five N rates (0, 10, 20, 40, and 80 kg ha-1), in a randomized block design arranged in split plots, with five replications. The organic fertilizer levels represented the main plots and the N levels, the subplots. The source of N was urea and the source of organic fertilizer was goat manure. Irrigation was applied through a drip system and N by fertigation. At the end of the third growing season, soil chemical properties were determined and nitrate concentration in the soil solution (extracted by porous cups) was determined. Organic fertilization increased organic matter, pH, EC, P, K, Ca, Mg, Mn, sum of bases, base saturation, and CEC, but decreased exchangeable Cu concentration in the soil by complexation of Cu in the organic matter. Organic fertilization raised the nitrate concentration in the 0.20-0.40 m soil layer, making it leachable. Nitrate concentration in the soil increased as N rates increased, up to more than 300 mg kg-1 in soil and nearly 800 mg L-1 in the soil solution, becoming prone to leaching losses.